
A N O T E  O N  S P H E R I C A L  S U M M A T I O N  M U L T I P L I E R S  

BY 

CHARLES F E F F E R M A N  

ABSTRACT 

We give a new proof of a theorem of L. Carleson and P. Sj61in on LP-bounded- 
ness of spherical summation operators in two variables. 

In this article we present alternate proofs of two recent multiplier theorems for 

Bochner-Riesz spherical summation operators. These operators are defined on 

LP(R n) by the equations T~f(O = m~(Of(~), where m~(~) = (1 - I~ 12) 4 i f [e l  < 1, 
and rn~(~) = 0 if --> 1 In the limiting case ),=0, we take m~ to be the charac- 

teristic function of the unit ball. To is a natural n-variable analogue of the Hilbert 

transform, while for ), > 0, T~ is a basic operator that serves to define Cesaro 

summation of multiple Fourier integrals. The multiplier problem for T~ simply 

asks: For which ), and p is T~ a bounded operator on  LP(Rn)? 
A great deal is already known about the multiplier problem for T~ (see, e.g., 

Bochner [1], Stein [8], Herz [5], Fefferman [3], [4], and Carleson and Sj61in [2]), 

and the known results are summarized below. 

THEOREM. 

(A) (Herz [5]). T~ is unbounded on LP(R ~) unless p lies strictly between 

Po(),) = 2n/(n + 1 + 2),) and its dual exponent p~(),). 

(B) (Fefferman [3]). I f ) ,  > ( n -  1)/4, then T~ is bounded on LP(R ~) for 

Po(),) < P < Po(),). 

(C) (Carleson and Sj61in [2]; see also a simplified version by HiSrmander [6]). 

In R 2, Tz is bounded on L p whenever 2 > 0 and Po()`) < P < P~)(),)- 

(D) (Sj61in [7]). In 

Po()`) < P < p~(2). 
(E) (Fefferman [4]). 

R a, Tz is bounded on L p whenever 2 > �88 and 

To is never bounded on LP(R n) unless n = 1 or p = 2. 
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Thus, although new ideas are needed for a complete solution, it seems likely 

that the answer to our multiplier problem will be that T~ is bounded on L p if and 

only if 2 > 0 and Po(,~) < P < Po(;0. 

Unfortunately, the proofs of (A)-(E) now in the literature have so little in com- 

mon with one another, that one suspects that we do not yet understand what is 

really going on. (This is especially striking for the two sharp results, (C) and (E); 

(C) was proved in the spirit of the Hausdorff-Young inequality, while (E) is based 

on the Kakeya needle problem.) Actually, things are not so bleak (we hope). 

The main object of this article is to present the author's proof of (C), which has 

points of close contact with all the various known proofs of (A)-(E), and perhaps 

helps to show how they fit into a coherent whole. We also take the opportunity 

to present E. M. Stein's elegant and simple proof of (B) and (D). 

Before we come to the details of the proofs, however, some remarks are in 

order concerning the underlying strategy. We may single out three main ideas 

which lurk behind the proofs of (A)-(E). 

(1) The multiplier problem for T~ is intimately related to some surprising 

"restriction theorems" on Fourier transforms. A typical restriction theorem is 

as follows: Let f be a function in L 4 /3  - e(R2). Then its Fourier transform f belongs 

to L 4/3 when restricted to the unit circle. (For a precise statement and the easy 

proof, see [3]). This result makes essential use of the curvature of the circle, and 

the analogous statement for a line segment is completely false. Restriction theorems 

serve as a simplified model for the phenomena that arise in the study of T~. To 

illustrate the close connection between restrictions and Tz, we mention an easy 

folk theorem, which the reader may verify with a little calculation: Let f e LP(R n) 

have compact support. Then 

Tof (x )~  ixl(,+,)/2 . f  as x ~ o o .  

Actually, this observation is only a beginning, and the more one thinks about T~, 

the more one is led inexorably to the analogy between multiplier theorems and 

restriction theorems. 

(2) In two dimensions, it happens that the crucial inequality for T~ is an 

D-estimate. (See below.) Now, to decide whether a function F belongs to D, 

we may simply ask v, hether F 2 is in L 2. This allows us to use LZ-methods (ortho- 
gonality, the Fourier transform, etc.) to reduce our basic D-estimate to something 
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easy, which is the point of proving estimate (6) below. Already in R a, the crucia I 

problem is an La-estimate, and we can no longer reduce matters to L 2. Thus, new 

ideas are needed to make progress in higher dimensions. 

(3) In the standard one-dimensional case, one knows that the Hilbert transform 

is linked inseparably to the Hardy-Littlewood maximal function. Thus, in trying 

to arrive at a real understanding of  the operators T~, one ought to look for an 

n-dimensional variant of  the max function and study its connection with T~. 

Now it appears that the correct maximal function with which to compare Tx is 

not the usual one formed with cubes or balls, but rather some sort of "Kakeya"  

maximal function, formed from highly eccentric rectangles pointing in arbitrary 

directions. We have only begun to explore this approach, but so far it has yielded 

interesting results (see [4]); perhaps more will come of it. The real purpose of  our 

proof  of (C) is to begin the task of  seeing how Tz may be controlled by a Kakeya 

maximal function. 

We are now ready to prove the result of  Carleson and Sj61in. 

TrIEORe~ 1. All T~. (2 > 0) are bounded on L4(R2). 

From this, the full result (C) follows easily by interpolation and duality. 

PRoof. T~ is a convolution operator with a kernel k~ which is 

essentially k;t(x) = e'lXf/lx 13:2+  see [5]. Immediately we decompose kx into 

KO(x) + X,t~l K'(x), where Kt(x) = q~'(lx [) �9 k~(x), and {~t} is a smooth par- 

tition of  unity on (0, co) with ~b 1 supported in (1,3) and ~b~(r) = ~bl(21-~r) for 

l > 1. K ~ is an D kernel, so we neglect it. We shall prove that the operator 

norm of T t: f ~ K t �9 f on L 4 is at most 

(2) II T' l[ < C" 2 -'~ (some r />  0). 

Once we know this, we obtain the Carleson-Sj61in result at once, simply by sum- 

ming a geometric series. 
Let us fix l, and set N = 2 ~+z. To prove the estimate (I), we shall make several 

successive decompositions of K ~ into ever-finer pieces. But for all our merry 

pranks, we shall never decompose K z into more than N a pieces. Therefore, as 

we go about estimating the various pieces of K t, no error terms whose norms 

are O(N-500) will make significant contributions, and we refer to such miniscule 

terms as "negligible". Thus, we systematically ignore negligible terms. 

Now let us start to prove (2). Divide the plane R 2 into a grid of  N by N squares. 

Since the support of  the kernel K ~ has diameter < N, it follows that T t in effect 
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acts indepen~lently on each of  the squares of  the grid, so to prove estimate (1), 

it is enough to consider functions f defined on a single N by N square QO and 

prove that 

(2) It g',fllL,, o, =< CN-" 

We now make our first decomposition of  K ~. Let {flj(O)}[j[~nN~ be a smooth 

partition of unity, 1 = ]~fij(O) in ]0] < n, with flj supported in ( j -  1)/N'/2 <_ 0 <_ 
( j+I ) /N  1/2. Then using polar coordinates in the plane, decompose K t into 

KZ(r) = ~s S"n~ Kt(r)flj(O) -- ]~jKJ(r. 0). To simplify the Euclidean geometry 

that will come into our proof later, we shall replace K t and T ~ by 

g'= X K] 
O < _ j < ( n / 4 ) N  "~ 

and its corresponding convolution operator f t .  In effect,/~t(r, 0) = Z[o,n/4j(O)Kl(r). 
Instead of (2), we shall prove the analogous estimate 

(3) I[ cu-"[I 
From (3), estimate (2) follows at once, since the kernel K l is a sum of eight iso- 

morphic terms KZ(r ) -  ZEO,~la](O)Kt(r)+ z[n/4,~/2l(O)Kl(r)+ ... + Z[7n/4,2~i(O)KI(O. 
Next we introduce some notation. Each KJ(r, O) is supported in a "rectangle" 

R j = { ( r ,  0) l N / 4 < r < N ,  ( j - 1 ) / N  1 / 2 < 0 < ( j + l ) / N I / 2 } .  Let ooj be the 

unit vector in the direction 0 = j /N ~/2, and let v# be a unit vector perpendicular 

to coj. The "rectangle" Rj then has dimension roughly N x/2 in the vfdirection 

and N in the ~oj-direction. 

To prove (3), we need information on the Fourier transform of K~, and so we 

define some auxiliary functions on R 2. Take a small number 6 > 0 to be deter- 

mined later, and define smooth functions ~,j and ~bj so that 

(~) q~j(x) = 1 for x in the rectangle r ~ ] ( x  
(D j ) "  O J j[  < N~-x 

and ~bj(x) = 0 outside the double of that rectangle, 

(fl) ~Oj(x) = 1 if I x - coj ] < 3N~- ~/2, but ffj(x) = 0 if Ix - ~oj[ > 5N n-112. 

In effect, we shall see that gJ is supported inside supp(~bj). More precisely, 

KJ = K ~ .  q~j + a negligible term. To see this, we start with the function 
-- ix '6J. iTJ. l;  x e hjtx) ,  and dilate the plane by a factor of N -  ~ in the ogj-direction and 

N -  ~/2 in the v j-direction. We arrive at a function k o in the Schwartz class (R2), 



48 r  F E F F E R M A N  Israel J. Math. ,  

with bounds independent of l and j. Consequently, if N is large, the Fourier 

transform ~u will be supported in ] ~ [ < N ~, except for a negligible error. Passing 

from k u back to K~, we find exactly that KJ = K~* q~j + negligible. 

Now we can begin to prove (3). Modulo negligible terms, we have 

II ~V'fll:--II z KJ*<~* f l l ,  ' -- 11 .Z,(*c$ ,<~, , f ) .  (KJ. ,<D~, *f) l lJ 
J 2,3 

= II z (eJ+,.,,),(eJ,+,,.,,)lll j , j '  

by the Plancherel theorem. Now the support of  (/r ~) �9 (RJ,~bj,) ~) is contained 

in Aii, = support (~bj)+ support(q~i) , and by the geometry of the situation, 

no point of R 2 belongs to more than N 3~ of the A j j , .  (This is where we use the 

fact that the circle is curved; cf. the restriction theorem in [3]). It follows that 

1 2 II ~V':ll," --< N~, .z, II (g]~J)* (~J,@~r I1~ 
2,.# 

= N3,  z II (KS, 4, ,s).  (Kj,, 4,, ,s)II~ (by Plancherel again) 
j , j '  

= N3,  z., (KJ,~,,@,,S).(KS,@,,,r since ~ s = ~ , , ~ x ,  
J , J  

and modulo negligible terms this gives 

(4) II ~'sll: ---< N~" Z II(KJ ,,~, , f ) -  (KJ, *'~x' * f )  IIl. 

This completes the first step in our proof of (3). Having cut up K t, we are now 

going to decompose f. First we divide our N by N square into N ~/2 vertical 

strips p~,p2,...,pN~, of dimensions N ~/2 by N. We shall prove that if f is a 

function supported on a single strip W, then 

(5) 11 ~'sll, =<- CN-~"-,  tlmll,. 
This estimate yields (3) at once, for we simply write f e  L4(Q ~ as f = Y~,___N~f, 

with f~ supported on P s, and then from (5), we have 

CN""-"(N~'~)  3:" (x Ilfsll:) ~:, ~ cN "llfll, 
$ 

So we shall fix a strip po once and for all, and try to prove (5) for functions sup- 

ported on po. 
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Next, we cut up the strip po into N 1/2 small squares {Qi} of size N 1/2 by N 112, 

and split f e  D(P ~ into f = ~ f i  with fi supported in Qi. Set fij = ~j * fi.  

Modulo a negligible error, fu  lives in Q*, the double of Qi. Now by (4) we have 

II ~'fll: --< N3, x (ILK/, @~,f) .  (gJ, ,@j, , f ) l l2  j,j' 

j , j '  i , i '  

For each fixed j , j ' ,  the i,/'-term in the inner sum is supported (modulo neligible 

errors) in the set 

P.,jj ,  = [support (K J) + Q*] c~ [support (K~;) + Q~]. 

Moreover, it is a simple geometrical fact that for fixed j , j ' ,  no point of R 2 belongs 

to more than ten of the sets P . , j y .  Therefore, 

( 6 )  II ~'fllt z cg~' X Z I1 (g~,  S,,)" (KS'*i,',')I1~" 
j , j '  i , i '  

This is our basic estimate; from here on, our proof of (5) is rather straightforward. 

Let us make crude estimates for fu  and K~ �9 fu" First of all, the Plancherel 

formula and H61der's inequality show at once that 

[f,[2d~ 
j j dR" i JR2 

= N'lli, ll~ ---- N""211i, ll, ~ 
In particular, for ~,~=(1/Ia,I)/e*l f,J (y)l dy,we have the estimates ~j  Ic , /  

<= CN'-"2 III, I1~ (by Minkowski's inequality); hence, 

(7) x (x  ~,5) ~ <= cg2,-~ z lls, llt = cx~'-' l lf l l: .  
j j i 

On the other hand, we can estimate K~ �9 fi j in terms of c u by writing [ K~ �9 f~j(x)l 
_ K l -< Y~ II ~11~ If,  J( ~ - y) Idy <= N-'/2-* %Z~,.+~/~), s i n c e  R, = s u p p  (O. 
Putting this estimate into (6) yields 

cijci,j," area([Q* + Ri] o [Q~ + Rj,]) 
j , j '  i i '  

c 2 c 2 , �9 area (P,,jy). CN3~-l-4z ~ ij i'j 
fl ' j j '  

An elementary calculation of the area of Pu'ii ' shows that: 

(a) nu'jj '  is empty unless �89 < l i - e'l/IJ-J'[ --- 2. 

(b) If P.,jj, is nonempty, its area is at most CN3/2/( I i -  i' I + 1). (Here we 

assume the Qi's are numbered consecutively, top to bottom.) Consequently, 
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N ~/2 2 2 
CijC i "j' (8) li ~if1144 < CNa6_i/z_4z Z 

i , i ' , j , j ' = l  i i -  i' I + 1' 

and we already have an estimate (7) for the cls. The right-hand side of (8) may be 

rewritten in the form 

c,,,,,) 
, , , , : ,  I i - i ' ] + l  , 

and we now invoke the elementary inequality 

AiAi, 
E -7,i,i + i < ClogN.  E -4, 2, 

l , l '=l  I i -- , 

with Ai = Xjc 2 �9 The result is 

I1 ~'fll," --- c N 3 ' - . 2 - . ~ l o g N .  

and at last by (7) we have 

(9) II T'Tll~ z cN3~-3/2-'~logN . Ilfll~. 

This implies (5) at once, since the small number 8 is at our disposal; and since 

we had reduced matters to (5), the proof  of  the Carleson-Sj61in theorem is com- 

plete. Q.E.D. 

REMARK. By keeping careful track of  error terms, we could in effect have 

taken 6 = 0 in the above. Equation (9) would then show that, as an operator on 

L4(RZ), T/has norm 11 ~/II = o(N-~(logN),,). Whis bound is rather sharp; in 

particular, the techniques of  [4] show that 

II ~' II > cN-a(l~ 
= log log N as l - - r o o .  (Recall that N = 2t). 

We conclude with E. M. Stein's simple proof of  (B) and (D). The original 

proof of  (B) given in [-3] involved a rather complicated reduction to the following 

L 2 restriction theorem: If f ~ LV(R n) and p > 4n/(3n + 1), it follows that f belongs 

to L 2 on the unit sphere, and 

(10) I1:11-:-~>---- c Ilsll~. 
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To prove (D), Sj~51in replaced (10) with a sharper estimate, valid in R a, namely, 

(u) I1:11,.,,-, =< c 11:11,,~. 

Stein's proof of (B) and (D) consists of the following. 

LEMMA. Suppose that 2 > 0 and po(2) < p < 2. Suppose also that inequality 

(10) holds for all f ~ LP(R"). Then T~ is bounded on LP(R"). 

PROOF. As in the proof of Theorem 1, we split T~ into T ~ + Y~l~ a T~ with 

K~ the convolution kernel for T~, and we note that the lemma reduces to the 

estimate 

(12) II TWII,.,oo, <= c .  2-'"I1:II, (for some r />  0), 

for f supported in a cube Qo of side ~ 21+2. 

We prepare to apply the L z restriction theorem (10). First, observe that by a 

simple change of variable, we may replace the unit sphere in (10) by the sphere 

of radius r, and (10) will hold uniformly for �89 < r < 2. Secondly, some calcula- 

tions with Hankel transforms show that R~(O is a radial function supported in 

=< Il l  =< 2, except for a negligible error. 

Now to prove (12) we simply write 

il TWIIZ,,Qo, s : : : ' - ' J f l  r~'fil~ = : : " - ' J  f.I e~'(O12li(r 

f: (}L ) = 2nir2w-" : - ' l e ' ( , ) l :  [)(r~)l:do~ dr 
~Sn--1 

c 2"':'-'-<'+=~>' lift1%, 

if we recall the size of the kernel K~. If p > po(2), the expression in braces is 

negative. Q.E.D. 
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